



# **INTRODUCTION TO PEP**

## **SEAMAC International Summer School 2024**

SEAMAC International Summer School 2024, Freiberg, Germany Technische Universität Bergakademie Freiberg (Germany)

#### **AM PROCESS CHAIN**





#### **PeP PROCESS**



Introduction to PeP SEAMAC International Summer School 2024, Freiberg, Germany

### **PLASMA-ELECTROLYTIC POLISHING**

- Deburring, smoothing, shining of metallic parts
- Complex geometries polishable
- Reduction of roughness -> increase of fatigue strength
- Development of electrolyte/alloy combinations
- Development of machinery (part size/selectivity/internal machining)
- Definition of surface requirements



PeP of brass (© BTE)



PeP von Titanium dental parts, steel grid, weld lines



#### **PeP SETUP**





#### **PeP PROCESS PRINCIPLE**

Anodic material removal and anodic Plasma at high voltages: **combination of current-induced chemical and physical removal**.

• Electrolytic cell

6

- Part is immersed in electrolyte, contacted as anode
- Low concentrated aqueous electrolyte, material specific,  $4 \le \sigma \le 30$  S/m
- DC voltages of 180V  $\leq$   $u_{\text{PeP}} \leq$  400V lead to formation of plasma skin around the part
- Electrochemical and plasma reactions take place
- Plasma zone in connection with electrochemical processes leads to exceptional surface quality







Part during PeP



Polished part



#### SURFACE MACHINING PROGRESSION IN PeP







#### SURFACE MACHINING PROGRESSION IN PeP







#### SURFACE MACHINING PROGRESSION IN PeP





Introduction to PeP SEAMAC International Summer School 2024, Freiberg, Germany

SAMPLE 2 / PROCESS START

#### $0,0 \text{ ms} \le t \le 8,33 \text{ ms}$













Introduction to PeP

SAMPLE 2 / PROCESS START

#### $\rightarrow$ t = 0 ms







360 V



Introduction to PeP

SAMPLE 2 / PROCESS START

#### → t = 0,33 ms







360 V



Introduction to PeP

SAMPLE 2 / PROCESS START

#### → t = 1,0 ms







360 V



Introduction to PeP

SAMPLE 2 / PROCESS START

→ t = 2,0 ms





316 V



360 V



14 Introduction to PeP

SAMPLE 2 / PROCESS START

→ t = 3,17 ms







360 V



Introduction to PeP

SAMPLE 2 / PROCESS START

#### → t = 4,17 ms





SAMPLE 2 / PROCESS START







#### **PeP BENEFITS**

- Low or no necessity for pre-treatment
- No shaped electrode / tool necessary
- Complex geometries polishable
- Small achievable roughness (R<sub>a</sub> ≈ 0.02µm, depending on original roughness)
- Short polishing time (MRR ≥ 50 µm/min achievable)
- Improved surface gloss (MRR ≤ 5 µm/min)
- Environmentally harmless electrolytes of low concentration
- No adsorbates in the processed surface layer







#### **PeP LIMITATIONS**

- Electrically conductive parts required
- Suitable for finish polishing and burr removal, but unsuitable for one-step polishing of very rough surfaces and heavy burrs (edge rounding after long processing time)
- Process energy source determines maximum part size
- Treating internal cavities of high aspect ratio is difficult
- Electrolyte adaption for each alloy necessary

## **COMPARISON TO OTHER NON-CONVENTIONAL PROCESSES**

| Characteristic             | EDM              | ECM                        | PeP      |
|----------------------------|------------------|----------------------------|----------|
| Voltage [V]                | 75-400           | <60                        | 180-400+ |
| Electrode distance [mm]    | 0.005-0.5        | 0.015-1                    | 5-500    |
| Workpiece polarity         | Anode or Cathode | Anode                      | Anode    |
| Conductive electrolyte     | No (dielectric)  | Yes                        | Yes      |
| Creation of glossy surface | No               | Depending on<br>parameters | (Yes)    |
| Workpiece-specific tool    | (Yes)            | (Yes)                      | No       |



#### **AM PART PEP**

#### AM (PBF-LB/M) part

Material: Ti6Al4V Target: gloss and shine increase Pre-treatment: corundum blasting

- > Gloss enhancement
- > Build step visibility







#### **APPLICATION: AM PARTS**

#### AM (PBF-LB/M) part

Material: steel

Target: smooth surface, gloss and shine increase Pre-treatment: corundum blasting

- > Gloss enhancement and roughness decrease
- > Reduction of built step visibility





### AM (PBF-LB/M) part

Material: steel Polishing time 40min. Pre-treatment: nil

- Gloss enhancement and roughness decrease
- > Reduction of built step visibility





Steel PBF-LB/M part, 2min. PeP







Steel PBF-LB/M part, 8 min. PeP







Steel PBF-LB/M part, 16 min. PeP







Steel PBF-LB/M part, 30 min. PeP







Steel PBF-LB/M part, 40 min. PeP









#### Steel PBF-LB/M part, 2min/30min PeP, LEXT imaging



29 Introduction to PeP



Steel PBF-LB/M part, 30min PeP, LEXT imaging (right side: higher magnification)



30 Introduction to PeP

#### Amplitude Ra Roughness average Rq Root mean square roughness Rt Maximum height of the roughness R<sub>v</sub> Maximum roughness valley depth Rp Maximum roughness peak height R<sub>tm</sub> Average maximum height of the roughness R<sub>vm</sub> Average maximum roughness valley depth R<sub>pm</sub> Average maximum roughness peak height R<sub>3z</sub> Average third highest peak to third lowest valley height R<sub>3z ISO</sub> Average third highest peak to third lowest valley height Amplitude Ra Roughness average Rq Root mean square roughness R<sub>t</sub> Maximum height of the roughness R Maximum roughness valley depth Rp Maximum roughness peak height R<sub>tm</sub> Average maximum height of the roughness R<sub>vm</sub> Average maximum roughness valley depth R<sub>pm</sub> Average maximum roughness peak height R<sub>3z</sub> Average third highest peak to third lowest valley height R. ... Average third highest neak to third lowest valley height



Steel PBF-LB/M part, 2min/30min PeP, LEXT imaging, gwyddion analysis Careful: not acquired according to standards!



31 Introduction to PeP

SEAMAC International Summer School 2024, Freiberg, Germany

#### Steel PBF-LB/M part, 2-40 min. PeP





#### **SURFACE PROGRESSION**



Steel PBF-LB/M part, 0/2min 8/10/12/14min 18/20/25/30min PeP, optical imaging





#### **AM SURFACE CHARACTERISTICS**

| Powder based                                     |                     | Wire based                    |
|--------------------------------------------------|---------------------|-------------------------------|
| Fine                                             | Layer thickness     | Coarse                        |
| Flat/straight                                    | Layer border shape  | Rounded                       |
| Partially molten material,<br>adhesion of powder | Influencing factors | Flow rate, pores, composition |
| High frequency 2D roughness                      | Perception          | Low frequency 1D waviness     |





#### **PeP SPECIFIC PROPERTIES**

|                      | Low<br>removal | Medium<br>removal | Large<br>removal |                                          |
|----------------------|----------------|-------------------|------------------|------------------------------------------|
| Gloss                | +++            | +++               | +++              | Material specific                        |
| Roughness<br>(micro) | +++            | +++               | +++              | Self-focus on sharp peaks                |
| Waviness             | ++             | +                 | +/-              | Slow removal of high kinematic roughness |
| Accuracy             | +++            | ++                | +/-              | Edge rounding                            |
| Toxicity             | +++            | +++               | +++              | No cytotoxicity                          |
| Planarity            | ++             | +/-               | +/-              | Influence of fluid/gas flow              |
| Cleanliness          | +++            | +++               | +++              | No adsorbates                            |



## **APPLICATION: CORROSION INHIBITION**

#### **Copper medtech part**

Material: copper Target: surface corroding less fast Pre-treatment: nil

- > Decrease in oxidation speed
- > Salt spray test supports slower corrosion statement





### **APPLICATION: MEDICAL**

#### Implant part

Material: CoCr

Target: deburring, surface smoothing, biocompatible Pre-treatment: fine machining / cutting

- > Smoothing depending on *real* material composition
- > No cytotoxicity based on process
- > Bacteria growth inhibited











### TASK TO SOLVE FOR INDUSTRIAL UPTAKE

| Material composition                                                                                                        | Large surface<br>areas                                                                                                                                                                      | Suitable<br>roughness range                                                                            | Process chain integration                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Material composition<br/>needs to be exactly<br/>known</li> <li>Electrolyte needs<br/>specific adaption</li> </ul> | <ul> <li>Constant parameters<br/>over large areas</li> <li>Direct influence on<br/>required power</li> <li>Request for selective<br/>polishing</li> <li>Different initial states</li> </ul> | <ul> <li>Parameter range<br/>input/output</li> <li>Assessment of<br/>efficiency, time, cost</li> </ul> | <ul> <li>Handling and<br/>automatisation of<br/>parts</li> <li>Cross-machine<br/>communication</li> <li>Online quality control<br/>and parameter setting</li> </ul> |
| Database generation                                                                                                         | Selective/Jet-PeP                                                                                                                                                                           | Fundamental research                                                                                   | Pilot plant                                                                                                                                                         |



#### **EQUIPMENT: VAT PeP**





Introduction to PeP SEAMAC International Summer School 2024, Freiberg, Germany

#### JET-PEP PROCESS PRINCIPLE





### Plasma assisted surface treatment of additively manufactured parts

#### LOCAL TREATMENT USING JET-PEP





#### JETPEP JETPEP makes processing possible that could previously only be done manually.





#### Applications

- Polishing of large workpieces (up to continuous)
- Area-specific reduction of roughness
- Targeted post-processing of weld seams

#### JETPEP JETPEP breaks through the application limits of plasma polishing: part size and selectivity.



#### Process

- Plasma polishing: approx. 70 W/cm<sup>2</sup>
- Selective and jet-based processing by means of a special JETPEP nozzle
- Low flow velocities, localized finishing effect
- Automation via robot and axis kinematics

# The unique properties of plasma-polished surfaces – exactly where you need them.

#### Welded assembly for the food industry

#### Material: 1.4301

Challenge: Local post-processing of welds, homogeneous gloss

**Result:** Removal of welding fumes and tarnishes within 15 s, increased gloss on the base surface



Schweißbaugruppe aus 1.4301, vor und nach dem JETPEP

#### **SUMMARY**

- PeP of post-processed AM parts
  - Roughness reduction
  - ➡ Gloss increase
- AM parameters can be traced with PeP
  - Scanning/hatching strategy
- Opening of pores

- So a straight of a straigh
- Possible deteroriation of "optically viable" surfaces



#### CONTACT

Technische Universität Bergakademie Freiberg IMKF - Additive Manufacturing Agricolastraße 1, 09599 Freiberg, Germany

Prof. Dr.-Ing. Henning Zeidler Tel: +49 3731 39 30 66 henning.zeidler@imkf.tu-freiberg.de





